GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC SEM-IV Examination-Nov-2011

Subject	Nam .30 pi	: X40903 Date: 25/11/2011 he: Power System Analysis and Simulation m -5.00 pm Total marks: 70	
1. 2.	Atte Mak	mpt all questions. The suitable assumptions wherever necessary.	
3. Q.1	Figu (a)	The state of the right indicate full marks. Derive the equations for transmission line. $V_s = V_r \cosh yl + I_r Z_c \sinh yl$ $I_s = V_r \frac{Sinhyl}{Z_s} + I_r \cosh yl$	07
	(b)	Show that AD-BC = 1 for transmission line.	07
Q.2	(a)	Explain propagation constant r and surge impedance for transmission line.	07
	(b)	A balanced load of 3 impedances each $(6 + j9)$ is supplied through line having an impedance of $(1+j2)$ ohm. The supply voltage is 400 volts 50Hz. Determine the power input and output when the load is connected in star.	07
	(b)	OR Explain: 1. Skin effect. 2. Farranti effect.	07
Q.3	(a)	Explain the importance of bundled conductors in transmission.	07
	(b)	What is importance of surge impedance loading OR	07
Q.3	(a) (b)	State the advantages of per unit values. Explain shunt compensation of transmission lines.	07 07
Q.4	(a)	The line current in amperes in phases a, b and c respectively are $500 + j150$, $100 - j600$ and $-300 + j600$ referred to the same reference vector. Find the symmetrical components of current.	07
	(b)	What is the importance of symmetrical components? OR	07
Q.4	(a)	State the corona characteristics. Discuss visual and disruptive corona.	07
	(b)	Which are the different types of grounding? How the modern power station generator neutral grounding is done?	07
Q.5	(a)	How the sequence networks are connected for LG, LL and LLG fault calculation.	07
	(b)	A 25 MVA, 13.2 kV, alternator with solid grounding has subtransient reactance of 0.25 p.u., the –ve and zero sequence reactance are 0.35 and 0.1 p.u. respectively. A single line to ground fault occurs at a terminal of generator. Determine fault current. OR	07
Q.5		Explain effect of transformer connections on its zero sequence networks.	14