\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC Sem-I June-July Examination 2011

Subject code: X10001
Date: 18/06/11
Total Marks: 70

Subject Name: Mathematics - I
Time: 10:30am to 1:30pm

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. $1 \quad$ Do as directed.
(a) Find a unit vector normal to the surface $x y^{3} z^{2}=4$ at the point (-$1,-1,2$).
(b) Evaluate $\int_{0}^{\pi} \int_{0}^{a(1+\cos \theta)} r d r d \theta$.
(c) Trace the curve $y^{2}(a-x)=x^{2}(a+x)$.
(d) Determine Rank of the following matrix by row echelon form

$$
A=\left[\begin{array}{cccc}
1 & 4 & 5 & 2 \\
2 & 1 & 3 & 0 \\
-1 & 3 & 2 & 2
\end{array}\right]
$$

Using Gauss-Jordan method, find the inverse of following Matrix
(e)

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right] .
$$

Q. 2 Attempt the following:
(a) Solve the following system of equations:
$x+y+2 z=8 ;-x-2 y+3 z=1 ; 3 x-7 y+4 z=10$.
By Gaussian elimination and back substitution.
(b) Find the Eigen values and Eigen vectors of the following Matrix

$$
A=\left[\begin{array}{lll}
8 & 0 & 3 \tag{04}\\
2 & 2 & 1 \\
2 & 0 & 3
\end{array}\right]
$$

Solve the following differential equations:
(c)
(i) $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$
(ii) $\left(x^{2}-y^{2}\right) d y=2 x y d x$

OR
Solve the following differential equations:
(c)
(i) $\left(x^{2}+y^{2}-a^{2}\right) x d x+\left(x^{2}-y^{2}-b^{2}\right) y d y=0$
(ii) $x \frac{d y}{d x}-a y=x+1$
Q. 3 Attempt the following:
(a) If $\mathrm{u}=\log \left(x^{3}+y^{3}-x^{2} y-x y^{2}\right)$ prove that

$$
\begin{equation*}
\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^{2} u=\frac{-4}{(x+y)^{2}} . \tag{05}
\end{equation*}
$$

(b) If $u=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, prove that $x \frac{d u}{d x}+y \frac{d u}{d y}=\tan u$.
(c) If $x=u(1-v), y=u v$ evaluate $\frac{\partial(x, y)}{\partial(u, v)}$.

OR

Q-3 Attempt the following :
(a) If $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that $x f y z=y f z x=z f x y$.

Find the maximum and minimum values of the function
(b) $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.

Find the approximate value of $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}$ at the point
(c) $(3.01,4.02,11.98)$.
Q. 4 Attempt the following:
(a) Evaluate $\iint_{R} y d y d x$, where R is the positive quadrant of the circle $x^{2}+y^{2}=1$.
(b) Find the volume of ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
(c)

Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$.
OR
Q. 4

Attempt the following:
(a) Change the order of integration and evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} y^{2} d y d x \tag{05}
\end{equation*}
$$

(b) Change into polar co-ordinate and evaluate
$\int_{0}^{a} \int_{y}^{a} \frac{x^{2} d x d y}{\sqrt{x^{2}+y^{2}}}$.
(C) By double integration, find the area common to the

Curves $y^{2}=x$ and $x^{2}=y$.
Q. 5 Attempt the following:
(a) A particle moves along the curve $x=1+t^{3}$, $y=t^{2}$ and $z=2 t+5$. Find the components of its velocity and acceleration at time $t=1$ in the direction of $2 \hat{i}+\hat{j}+2 \hat{k}$.
A vector field is given by $\vec{F}=(x+3 y) \hat{i}+(y-3 z) \hat{j}+(x-2 z) \hat{k}$
(b) Show that \vec{F} is solenoidal.
show that the differential equation for the current i in an electrical circuit containing an inductance L and resistance R in
(c) series and acted on by an electromotive force $E \sin \omega t$ satisfies the equation
$L \frac{d i}{d t}+R i=E \sin \omega t$.
Find the value of the current at any time t,if initially there is no current in the circuit.

OR
Q. 5 Attempt the following:
(a) Find the directional derivative of $f(x, y, z)=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of vector $\hat{i}+2 \hat{j}+2 \hat{k}$.
(b) Apply Green's theorem to evaluate $\int_{c}\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$,

Where c is the boundary of the area enclosed by the x axis and the upper half of the circle $x^{2}+y^{2}=a^{2}$.
(c) Find the orthogonal trajectories of the family of parabolas $y=a x^{2}$.

