Seat No.: Enrolment No

$\begin{array}{c} \textbf{GUJARAT TECHNOLOGICAL UNIVERSITY} \\ \textbf{PDDC} \textbf{-} \textbf{I}^{\text{st}} \textbf{ Semester-Examination - May/June-} \textbf{ 2012} \end{array}$

Subject code: X11902				
Date:02/06/2012 Subject Name: Engineering Therr		Subject Name: Engineering Thermodynamics Time: 10:30 am - 01:00 pm Total Marks: 70		
Ins	truc	tions:		
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)	Write in brief about thermodynamic equilibrium of a system. Explain the first law for a closed system undergoing a change of state.	07 07	
Q.2	(a) (b)	Explain the application of steady flow energy equation to nozzle and diffuser. Write the Kelvin-Plank and Clausius's statements for second law of thermodynamics and discuss their equivalence. OR	07 07	
	(b)	Explain Carnot theorem with suitable thermodynamic system	07	
Q.3	(a)	Explain briefly the processes of diesel cycle and derive the equation for efficiency of diesel cycle.	07	
	(b)	A heat engine operates in a cycle between a source temperature 900°C and a sink temperature of 30°C. What is the amount of heat rejection per kW net output of the engine?	07	
		OR		
Q.3	(a) (b)	Explain entropy change in irreversible process. In an ideal Brayton cycle, air from the atmosphere at 1 atm, 300 K is compressed to 6 atm and maximum cycle temperature is limited to 1100 K with the use of large air-fuel ratio. If the heat supply is 100MW, find i. The thermal efficiency of the cycle ii. Work ratio	07 07	
		iii. Power output		
Q.4	(a) (b)	Explain Rankine cycle with p-v, and T-s diagram. What is available energy? Discuss about available energy referred to a cycle. OR	07 07	
Q.4	(a)	Explain the p-v diagram of Carnot cycle and derive the equation for efficiency of	07	
	(b)	cycle. Explain bomb calorimeter with neat sketch.	07	
Q.5	(a) (b)	Discuss the Dalton's law of partial pressures for mixture of gases. A fuel has following composition by mass: Carbon 86%, Hydrogen 11.75%, Oxygen 2.25%. Calculate, i. The theoretical air supply per kg of fuel, and ii. Mass of products of combustion per kg of fuel.	07 07	
		OR		
Q.5	(a)	Derive the equation for entropy change of an ideal gas from the general property	07	

relations.

www.onlinegtu.com

(b) The ultimate analysis of dry coal burnt in a boiler is C 84%, H_2 9% and 07 incombustibles 7% by mass. Determine the mass of dry flue gases per kg of coal burnt, if the volumetric composition of the flue gas is : CO_2 8.75%, CO 2.25%, O_2 8% and O_2 81%
