\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE SEM-III Examination May 2012
 Subject code: 130701
 Subject Name: Digital Logic Design

Date: 09/05/2012
Time: $\mathbf{0 2 . 3 0} \mathbf{~ p m} \mathbf{- 0 5 . 0 0} \mathrm{pm}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1

(a) Convert the Decimal Number 250.5 to base 3, base 4, base 7 \& base 16.
(b) Given Boolean function 05
$F=x y+x^{\prime} y^{\prime}+y^{\prime} z$

1. Implement it with only OR \& NOT gates
2. Implement it with only AND \& NOT gates
(c) Design the Combinational Circuits for Binary to Gray Code Conversion. 05
Q. 2
(a) Determine the Prime Implicants of following Boolean Function using Tabulation 07
Method.

F(A,B,C,D,E,F,G) $=\sum(20,28,38,39,52,60,102,103,127)$
(b) Explain Design Procedure for Combinational Circuit \& Difference between 04 Combinational Circuit \& Sequential Circuit.
(c) Express following Function in Product of Maxterms

$$
F(x, y, z)=(x y+z)(y+x z)
$$

Q. 3
(a) Construct 4*16 Decoder with help of 2*4 Decoder. 05
(b) Discuss 4 bit BCD Adder in Detain. 05
(c) Explain Master Slave Flip Flop through J.K Flip Flop 04

OR

Q. 3
(a) Design Sequential Circuit with J.K. Flip Flops to satisfy the following state 07
equation.
$\begin{aligned} & A(t+1)=A^{\prime} B^{\prime} C D+A^{\prime} B^{\prime} C+A C D+A C^{\prime} D^{\prime} \\ & B(t+1)=A^{\prime} C+C D^{\prime}+A^{\prime} B C^{\prime} \\ & C(t+1)=B \\ & D(t+1)=D^{\prime}\end{aligned}$
(b) Explain 4 bit Magnitude Comparator.

Q. 4

(a) Explain 4bit binary ripple counter. 07
(b) Explain Arithmetic addition and arithmetic subtraction. 04
(c) Brifley explain processor unit with a 2-port memory 03

OR

Q. 4
(a) Define the different mode of operation of registers \& explain any two in details. $\mathbf{0 7}$
(b) How many flip flops are required to build a shift register to store following $\mathbf{0 4}$ numbers.
i) Decimal 28
ii) Binary 6 bits
iii) Octal 17
iv)Hexadecimals A
(c) Explain Macro operations Versus micro operations
Q. 5
(a) Explain 4-bit up-down binary synchronous counter.

07
(b) Explain comman cathode types seven segments displays. 03
(c) Simplify the following Boolean function using K-Map.

$$
\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}
$$

OR

Q. 5

(a) Explain Johnson Counters.07
(b) Write the Comparisons between Hard wired control and micro programmed 03
(c) Design a combination circuits for a full adder.

