•		Code: 140001 Date: 05-06-2013	
•	e: 10	Name: Mathematics - IV 0.30 am - 01.00 pm Total Marks: 70	
msu u	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Find the real and imaginary part of $f(z) = z^2 + 3z$. Sketch the region $ z \le 1$. Is it a domain?	02 02
	(c) (d)	For the principle branch show that $Log(i^3) \neq 3 Log(i)$. Evaluate $\oint_C (z^2 + 3) dz$ where C is any closed contour. Justify your answer.	02 02
	(e)	Prove that $\sin^{-1} z = -i \ln(iz + \sqrt{1 - z^2})$	02
	(f) (g)	Prove that $E = 1 + \Delta$ where Δ is forward deference and E is shift operator. Discuss the singularity of the point $z = 0$ for the function $\frac{\sin z}{z}$.	02 02
Q.2	(a) (b)	approximate solution of $x^3 + x - 1 = 0$ correct up to three decimal.	07 07
		$\int_{1}^{2.5} f(x)dx \text{ from the following data. Take h} = 0.3.$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(b)	Write formula for Range Kutta method for order four. Apply Euler's method to find the approximate solution of $\frac{dy}{dx} = x + y$ with $y(0) = 0$ and $h = 2$. Show your calculation up to five iterations.	07
Q.3	(a)	Explain quadratic Langrage interpolation. Compute $f(9.2)$ by using Langrage interpolation method from the following data. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07
	(b)	Use Newton's forward deference method to find the approximate value of $f(1.3)$ from the following data	07
Q.3	(a)	Write a formula for divided difference $f[x_0, x_1]$ and $f[x_0, x_1, x_2]$. Using Newton's divided difference formula compute $f(10.5)$ from the following data $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07
	(b)	Use Gauss Seidel method to determine roots of the following simultaneous equations.	07

- Q.4 (a) Define a harmonic function. Show that $u(x, y) = x^2 y^2$ is harmonic. Find the orresponding analytic function f(z) = u(x,y) + iv(x,y).
 - (b) Define a linear fractional transformation ($M\ddot{o}bius$ transformation). Find the bilinear transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto $w_1 = -i$ $w_2 = 1$, $w_3 = i$ respectively.

Also find w for $z = \infty$.

OR

- Q.4 (a) State de Moivre's formula. Find and graph all fifth root of unity in complex plane.
 - State Liouville's theorem and Maximum Modulus theorem. Without using 07 integration show that $\left| \oint \frac{e^z}{z+1} dz \right| \le \frac{8\pi e^4}{3}$ where C is |z| = 4

Q.5 (a) Evaluate (i)
$$\int_{0}^{2+i} z^{2} dz \text{ along the line } y = x/2$$

$$(ii) \oint_{C} \frac{5z+7}{z^{2}+2z-3} dz \text{ where C is } |z-2| = 2$$

- (b) Find Laurent's series expansion in power of z that represent $f(z) = \frac{1}{z^2(1-z)}$ for domain
- (i) |z| < 1 and (ii) |z| > 1
- Q.5 (a) (i) Evaluate $\oint_C \tan z dz$ where C is |z| = 2(ii) Evaluate $\oint_C \frac{2z+6}{z^2+4} dz$ C is |z-i| = 2
 - (b) Evaluate a real integral $\int_{0}^{2\pi} \frac{1}{(2+\cos\theta)^2} d\theta$ using residue.
