\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 BE SEMESTER-IV • EXAMINATION - SUMMER-2015

Subject Code: 140001
Date: 26/05/2015
Subject Name: Mathematics-IV
Time: 10.30AM-01.30PM
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) 1. From the following table estimate the number of students who obtain marks between 40-45.

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Number of students	31	42	51	35	31

2. Is $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$? Justify.
(b) Show that $f(z)=\left\{\begin{array}{cl}\sqrt{\mid x y} \mid & ; z \neq 0 \\ 0 & ; z=0\end{array}\right.$ satisfy C-R equations at $z=0$ but it is not $\mathbf{0 7}$ differentiable at $\mathrm{z}=0$.
Q. 2 (a) Find the $\mathrm{n}^{\text {th }}$ root of unity. Show that they are in Geometric progression and also show that their sum is zero.
(b) Evaluate $\int_{\mathrm{c}} \frac{\mathrm{z}^{4}}{(\mathrm{z}+1)(\mathrm{z}-\mathrm{i})^{2}} \mathrm{dz}$, where $\mathrm{c}: 9 \mathrm{x}^{2}+4 \mathrm{y}^{2}=36$ by using Residue $\mathbf{0 7}$ theorem.

OR

(b) Find the Laurent series expansion of $f(z)=\frac{-1}{(z-1)(z-2)}$ for the region

$$
\text { (i) }|z|<1, \text { (ii) } 1<|z|<2 \text {, (iii) }|z|>2
$$

Q. 3 (a) Evaluate $\int_{0}^{\infty} \frac{2 x^{2}-1}{x^{4}+5 x^{2}+4} d x$
(b) Evaluate $\int_{c} \frac{z+4}{z^{2}+2 z+5} d z$, where $C \quad$ is \quad (i) $|z|=1, \quad$ (ii) $|z+1-i|=2, \quad \mathbf{0 7}$ (iii) $|z+1+i|=2$

OR

Q. 3 (a) 1. If α and β are the roots of $x^{2}-2 x+2=0$, find the value of $\alpha^{n}+\beta^{n}$. 04 Hence deduce that $\alpha^{8}+\beta^{8}=32$.
2. Define: Residue, Pole, Essential Singularity
(b) 1. Prove that $\frac{\sin 7 \theta}{\sin \theta}=7-56 \sin ^{2} \theta+112 \sin ^{4} \theta-64 \sin ^{6} \theta$ and state the result 04 which you have used.
2. Define: Mobious transformation, Harmonic function, Analytic function
Q. 4 (a) By using Lagrange's formula find y when $\mathrm{x}=10$

x	5	6	9	11
y	12	13	14	16

(b) Solve by using Gauss-Seidel method correct to 5 decimal places.

$$
\begin{gathered}
8 x-3 y+2 z=20 \\
6 x+3 y+12 z=35 \\
4 x+11 y+z=33
\end{gathered}
$$

OR

Q. 4 (a) Find the root of $\times \log _{10} x=1.2$ by using Newton's Raphson method correct up to six decimal places.
(b) Using Newton's divided difference formula find a polynomial and also find $f(-1)$ and $f(6)$.

x	1	2	4	7
$f(x)$	10	15	67	430

Q. 5 (a) Use fourth order RK method to find the value of y at $x=1$, given that $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1$ with h=0.5.
(b) Find a root of $x^{3}-5 x+3=0$ by Bisection method correct up to four decimal places.

OR

Q. 5 (a) Use Simson's $1 / 3$ rd rule to find $\int_{0}^{0.6} \mathrm{e}^{-\mathrm{x}^{2}} d x$ by taking $\mathrm{n}=6$.
(b) Using Taylor's series method to solve $\frac{d y}{d x}=x y+y^{2}, y(0)=1$, at $x=0.2$, $h=0.1$.

