\qquad
(EM-6)

GUJARAT TECHNOLOGICAL UNIVERSITY

B.Pharm. Sem-I Examination December 08/January 09

Elementary (remedial) Mathematics (210006)
DATE: 31 -12-2008,Wednesday TIME: 11.00 am to 2.00 p.m. MAX. MARKS: 80

Instructions:

1. Attempt any five questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1(a) Solve the following system of linear equations using Cramer's rule
$x+2 y+3 z=6,2 x+4 y+z=7$ and $3 x+2 y+9 z=14$
(b) Evaluate $\mathbf{A}(\mathrm{BC})$ and (AB)C where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 0 & -1 \\
-1 & 0 & 2 \\
-1 & 2 & 0
\end{array}\right] \text { and } C=\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
$$

(c)

$$
\text { If } A=\left[\begin{array}{ccc}
1 & -1 & 0 \tag{6}\\
0 & 1 & -1 \\
1 & 0 & 1
\end{array}\right] \text {, then show that } A^{3}-3 A^{2}+2 A=2 I
$$

Q.2(a) Find the mean deviation and standard deviation for the following distribution of the weights of 250 children

Weights	$60-61$	$61-62$	$62-63$	$63-64$	$64-65$	$65-66$	$66-67$
in kg:	10	25	45	55	60	40	15

(b) If the probability that an individual suffers a bad reaction from a certain injections is 0.001 , determine the probability that out of 2000 individuals (i) exactly 3 (ii) more than 2 individuals will suffer a bad reaction.
Q.3(a) Find the area of triangle whose vertices are (2, 3), (2, 1), (1, 1)
(b) Find the equation of the line through the points $(4,-3)$ and $(0,1)$
(c) Find the equation of the locus of points twice as far from (3,2) as from (1, 1)
Q.4(a) Differentiate the following functions w.r.t. ' \mathbf{x} '

1] $y=e^{a x} \cdot \cos (b x+c)$
2] $x^{3}+y^{3}+3 x^{2} y=a^{3}$
(b) Find the $\mathbf{n}^{\text {th }}$ derivations of the following

1] $y=\sin ^{3} x$
2] $y=x \cdot \log (1+x)$
Q. 5 Solve the following differential equations

1] $\left(1+x^{2}\right) d y=\left(1+y^{2}\right) d x$
2] $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
3] $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$
4] $\frac{d y}{d x}=\frac{2 x(\log x+1)}{\sin y+y \cos y}$
Q.6(a) Evaluate the following integrals.
1] $\int \frac{d x}{1+\sqrt{x+1}}$
2] $\int \frac{\sin 2 x}{\sin ^{4} x+\cos ^{4} x} d x$
3] $\int \frac{2 x}{x^{2}-7 x+12} d x$
4] $\int_{0}^{\pi / 2} \sin ^{2} x d x$
(b) Find all t-ratios of 120°
(c) If $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$, show that $\cos \theta-\sin \theta=\sqrt{2} \sin \theta$
Q.7(a) In how many ways can 5 boys and 3 girls stand in a raw so that no two girls are together?
(b) Find the sum of all natural numbers between 200 and 400 which are divisible by 7 .
(c) Using binomial expansion, prove that $(\sqrt{2}+1)^{5}-(\sqrt{2}-1)^{5}=82$

