http://	www.guj	jaratstud	ly.con

Seat No.:

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BPHARM – SEMESTER II • EXAMINATION – SUMMER • 2015

Subject code: 2220002	Date: 04-06-2015
Subject Name: Pharmaceutical Chemistry -	II (Physical Chemistry)
Time: 10:30 am - 01:30 pm	Total Marks: 80
Instructions.	

1. Attempt any five questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	State and explain Raoult's law of dilute solution. Discuss deviation of real solution from the Law.	06
	(b)	Define Colligative property. Enlist different types of colligative properties. Describe briefly lowering of the Vapour pressure.	05
	(c)	Write note on Debye–Huckel theory.	05
Q.2	(a)	What is surface tension? Discuss the measurement of surface tension by drop formation method.	06
	(b) (c)	Explain: (i) Dipole moment (ii) Specific rotation (iii) Refractive index Define viscosity & write units of it. Describe principle of Ostwald's viscometer.	05 05
Q.3	(a) (b)	Explain: Quantum efficiency, Florescence, Photochemical reactions. Discuss consequences of light absorption by matter. Give applications of photochemistry in pharmacy.	06 05
	(c)	State and explain Lambert – Beer law.	05
Q.4	(a)	What do you mean by partition coefficient? How it is useful in pharmacy? State and explain distribution law.	06
	(b)	Explain the terms (i) Heat of Formation and Heat of solution (ii) Entropy and Enthalpy.	05
	(c)	Differentiate the following: (i) Isothermal and adiabatic process (ii) Reversible and irreversible process.	05
Q.5	(a) (b) (c)	Explain: Equivalence conductance, Molarity and molality, Phase rule. What is adsorption? Discuss applications of adsorption in pharmacy. Write a note on Langmuir Adsorption isotherms.	06 05 05
Q. 6	(a) (b) (c)	Write a detail note on First law of thermodynamics. What is the basic principle of Joule –Thomson effect? Write a note on methods for determination of order of reaction.	06 05 05
Q.7	(a)	Explain "Activation energy" of a chemical reaction. Describe effects of temperature on Rate of reaction.	06
	(b) (c)	What is catalytic reaction? Write a note on Collision theory for reaction rates. Derive reaction rate constant, half life of first order reaction kinetics.	05 05
