Seat No.: \_\_\_\_\_

Enrolment No.

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

MCA - SEMESTER-I • EXAMINATION - SUMMER • 2014

Subject Code: 2610003 Date: 18-06-2014

**Subject Name: Discrete Mathematics for Computer Science (DMCS)** 

Time: 10:30 am - 01:00 pm Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define poset. When is a poset said to be a lattice? Draw Hasse diagrams of following 07 posets and examine which of them are lattices.
  - (a)  $< P(S), \subseteq >, S = \{a, b, c\}$
  - (b)  $< \{1, 2, 3, 12, 18\}, D>$
  - $(c) < \{1, 2, 3, 6\}, D >$
  - (d)  $< S_{16}, D>$ .
  - (b) (1) Show that a lattice with three or fewer elements is a 03 chain.
    - (2) Find the complements of every element of the lattice  $\langle S_n, D \rangle$  for n = 45.
- **Q.2** (a) (1) Show that in a lattice if  $a \le b \le c$  then

03

- (i)  $a \oplus b = b * c$
- (ii)  $(a * b) \oplus (b * c) = b = (a \oplus b) * (a \oplus c)$ .
- (2) Define a Distributive lattice. Prove that in a distributive **04** lattice, complement of an element, if it exists, is unique.
- (b) (1) Find the value of  $x_1 * x_2 * [(x_1 * x_4) \oplus x_2' \oplus (x_3 * x_1')]$  for  $x_1 = a$ ,  $x_2 = 1$ ,  $x_3 = b$  and  $x_4 = 1$  where a, b,  $1 \in B$  and the Boolean algebra  $a \in B$ ,  $a \in B$ ,  $a \in B$



- (2) Obtain the sum-of-products canonical form of the following Boolean expressions:
  - $(i) (x_1 \oplus x_2)' \oplus (x_1' * x_3)$
  - (ii)  $(\mathbf{x}_1 * \mathbf{x}_2') \oplus \mathbf{x}_3$

OR

- (b) Use the Quine-McCluskey algorithm to find the prime implicants of the expression:  $f(a, b, c, d) = \sum (0, 1, 4, 5, 9, 11)$ . Also obtain a minimal expression for the same.
- Q.3 (a) (1) Prove that the only idempotent element in a group is the 03 identity element.
  - Define: Abelian Cyclic Show that 04 (2) group, group. every cyclic group is abelian. Is the converse true? Justify your answer.

04

0.3 (a) (1) Show that in a group  $\langle G, * \rangle$ , if for any a, b  $\in G$ , 03  $(a * b)^2 = a^2 * b^2$ , then <G, \*> must be abelian. 04 (2) Show that  $\{1,4,13,16\}, \times_{17} > \text{ is a subgroup of } \}$  $< Z_{17}^*, \times_{17} >.$ Prove that  $\langle Z_7^*, \times_7 \rangle$  is a group. What are the generators of this group? 07 **Q.4** (1) Show that formula logically implies 03 (a) statement A statement formula B where A:  $\sim q \land (p \land q)$  and B:  $\sim p$ . denote the sentence: the 04 P(x,v) 1.What are ν values truth of  $\forall x \exists y P(x,$  $\forall x \forall y P(x,$ y) and  $\exists x \exists y P(x,y)$ y), where the domain of x, y is the set of all integers? 04 (1) Construct the truth table for each of the following statement formulas. (i)  $(p \rightarrow q \land r) \lor (\sim p)$ (ii)  $(p \lor q) \leftrightarrow (q \rightarrow r)$ . 03 (2) Show without constructing the truth table that the statement formula  $\sim p \rightarrow (p \rightarrow q)$  is a tautology. **(a)** (1) Symbolize the predicates, **Q.4** following sentences by using 04 quantifiers and logical connectives. (i) Every integer is either odd or even. (ii) If you buy a car, then you must pay a sales tax. (iii) Some people are vegetarians. if  $n^2$ Give an indirect proof show that 3 is odd then 03 to n is even. (1) Prove that  $\forall x \in \mathbb{Z}, x^2 - x$  is an even integer. 04 (2) Test the validity of the following argument: 03 If it snows, then the streets become slippery. If the accidents streets become slippery, then happen. Accidents do not happen. Therefore, it does not snow. **Q.5** Define Node base. State properties of node base. Explain why no node in a node base is **07** reachable from another node in the node base. From the adjacency matrix of a simple digraph, how will you determine whether it is a 07 directed tree? If it is a directed tree, how will you determine its root and terminal nodes? OR Define strongly connected graph. Show that in a simple digraph  $G = \langle V, E \rangle$ , every 07 **Q.5** node of the digraph lies in exactly one strong component. Define: Directed tree and its leaf. Draw the graph of the tree represented by **07** (A(B(C(D)(E)))(F(G)(H)(J))(K(L)(M)(N(P)(Q(R)))).Obtain the binary tree corresponding to it. \*\*\*\*\*\*\*

**(b)** Define: Kernel of a group homomorphism. Show that it is a subgroup.

07