\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER-I • EXAMINATION - SUMMER • 2014

Subject Code: 2610003
Date: 18-06-2014
Subject Name: Discrete Mathematics for Computer Science (DMCS)
Time: 10:30 am - 01:00 pm
Total Marks: 70
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Define poset. When is a poset said to be a lattice? Draw Hasse diagrams of following posets and examine which of them are lattices.
(a) $<\mathrm{P}(\mathrm{S}), \subseteq>, \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(b) $<\{1,2,3,12,18\}$, D $>$
(c) $<\{1,2,3,6\}$, D $>$
(d) $\left\langle\mathrm{S}_{16}\right.$, D \rangle.
(b) (1) Show that a lattice with three or fewer elements is a 03 chain. 04
(2) Find the complements of every element of the lattice $<\mathrm{S}_{\mathrm{n}}, \mathrm{D}>$ for $\mathrm{n}=45$.
Q. 2 (a) (1) Show that in a lattice if $\mathrm{a} \leq \mathrm{b} \leq \mathrm{c}$ then
(i) $\mathrm{a} \oplus \mathrm{b}=\mathrm{b} * \mathrm{c}$
(ii) $(\mathrm{a} * \mathrm{~b}) \oplus(\mathrm{b} * \mathrm{c})=\mathrm{b}=(\mathrm{a} \oplus \mathrm{b}) *(\mathrm{a} \oplus \mathrm{c})$.
(2) Define a Distributive lattice. Prove that in a distributive 04 lattice, complement of an element, if it exists, is unique.
(b) (1) Find the value of $\mathrm{x}_{1} * \mathrm{x}_{2} *\left[\left(\mathrm{x}_{1} * \mathrm{x}_{4}\right) \oplus \mathrm{x}_{2}{ }^{\prime} \oplus\left(\mathrm{x}_{3} * \mathrm{x}_{1}{ }^{\prime}\right)\right]$

03
for $\mathrm{x}_{1}=\mathrm{a}, \mathrm{x}_{2}=1, \mathrm{x}_{3}=\mathrm{b}$ and $\mathrm{x}_{4}=1$ where $\mathrm{a}, \mathrm{b}, 1 \in \mathrm{~B}$ and the Boolean algebra $<\mathrm{B}, *, \oplus,{ }^{\prime}, 0,1>$ is given by

(2) Obtain the sum-of-products canonical form of the following Boolean expressions:
(i) $\left(\mathrm{x}_{1} \oplus \mathrm{x}_{2}\right)^{\prime} \oplus\left(\mathrm{x}_{1}{ }^{\prime} * \mathrm{x}_{3}\right)$
(ii) $\left(\mathrm{x}_{1} * \mathrm{x}_{2}\right) \oplus \mathrm{x}_{3}$

OR

(b) Use the Quine-McCluskey algorithm to find the prime implicants of the expression:
$f(a, b, c, d)=\sum(0,1,4,5,9,11)$. Also obtain a minimal expression for the same.
Q. 3 (a) (1) Prove that the only idempotent element in a group is the $\mathbf{0 3}$ identity element.
(2) Define: Abelian group, Cyclic group. Show that every 04 cyclic group is abelian. Is the converse true? Justify your answer.
(b) Define: Kernel of a group homomorphism. Show that it is a subgroup.
Q. 3 (a) (1) Show that in a group $\langle G, *>$, if for any $a, b \in G$,
$(\mathrm{a} * \mathrm{~b})^{2}=\mathrm{a}^{2} * \mathrm{~b}^{2}$, then $<\mathrm{G}, *>$ must be abelian.
(2) Show that $<\{1,4,13,16\}, x_{17}>$ is a subgroup of $<Z_{17}{ }^{*}, \times_{17}>$.
(b) Prove that $\left\langle\mathrm{Z}_{7}{ }^{*}, x_{7}\right\rangle$ is a group. What are the generators of this group?
Q. 4 (a) (1) Show that statement formula A logically implies statement formula B where A: $\sim q \wedge(p \wedge q)$ and $\mathrm{B}: \sim p$.
(2) Let $\mathrm{P}(x, y)$ denote the sentence: $2 x+y=1$.What are the 0 truth values of $\forall x \exists y \mathrm{P}(x, \quad y), \quad \forall x \forall y \mathrm{P}(x, \quad y) \quad$ and $\quad \exists x \exists y \mathrm{P}(x, \mathrm{y})$ where the domain of x, y is the set of all integers?
(b) (1) Construct the truth table for each of the following statement formulas.
(i) $(p \rightarrow q \wedge r) \vee(\sim p)$
(ii) $(p \vee q) \leftrightarrow(q \rightarrow r)$.
(2) Show without constructing the truth table that the statement formula $\sim p \rightarrow(p \rightarrow q)$ is a tautology.

OR

Q. 4 (a) (1) Symbolize the following sentences by using predicates, 04 quantifiers and logical connectives.
(i) Every integer is either odd or even.
(ii) If you buy a car, then you must pay a sales tax.
(iii) Some people are vegetarians.
(2) Give an indirect proof to show that if $\mathrm{n}^{2}+3$ is odd then $\mathbf{0 3}$ n is even.
(b) (1) Prove that $\forall x \in Z, x^{2}-x$ is an even integer.
(2) Test the validity of the following argument:

If it snows, then the streets become slippery. If the streets become slippery, then accidents happen. Accidents do not happen. Therefore, it does not snow.
Q. 5 (a) Define Node base. State properties of node base. Explain why no node in a node base is reachable from another node in the node base.
(b) From the adjacency matrix of a simple digraph, how will you determine whether it is a directed tree? If it is a directed tree, how will you determine its root and terminal nodes?

OR

Q. 5 (a) Define strongly connected graph. Show that in a simple digraph $\mathrm{G}=<\mathrm{V}$, E\rangle, every node of the digraph lies in exactly one strong component.
(b) Define: Directed tree and its leaf. Draw the graph of the tree represented by $(\mathrm{A}(\mathrm{B}(\mathrm{C}(\mathrm{D})(\mathrm{E})))(\mathrm{F}(\mathrm{G})(\mathrm{H})(\mathrm{J}))(\mathrm{K}(\mathrm{L})(\mathrm{M})(\mathrm{N}(\mathrm{P})(\mathrm{Q}(\mathrm{R})))))$.
Obtain the binary tree corresponding to it.

