\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA Sem-I Remedial Examination April 2010
Subject code: 610003
Subject Name: Discrete Mathematics For Computer Science
Date: 06 / 04 / 2010
Time: 12.00 noon - 02.30 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Answer the following:
(i) Express the following using predicates, quantifiers, and logical 04 connectives. Also verify the validity of the consequence.

Everyone who graduates gets a job.
Ram is graduated.
Therefore, Ram got a job.
(ii) Prove by contradiction that $\sqrt{2}$ is an irrational number. 03
(b) Draw Hasse Diagram of the $\operatorname{poset}\langle\{2,3,5,6,9,15,24,45\}, D\rangle$. Find 07
(i) Maximal and Minimal elements
(ii) Greatest and Least members, if exist.
(iii) Upper bound of $\{9,15\}$ and l.u.b. of $\{9,15\}$, if exist.
(iv) Lower bound of $\{15,24\}$ and g.l.b. of $\{15,24\}$, if exist.
Q. 2 (a) When a poset said to be lattice? Explain. Is every poset a lattice? Justify.

Is the poset $\langle\{\varnothing,\{p\},\{q\},\{p, q, r\}\}, \subseteq\rangle$ lattice?
(b) Show that the lattice $\left\langle S_{n}, D\right\rangle$ for $n=100$ is isomorphic to the direct07 product of lattices for $n=4$ and $n=25$.

OR

(b) With proper justification give an example of
(1) A bounded lattice which is complemented but not distributive.
(2) A bounded lattice which is distributive but not complemented.
(3) A bounded lattice which is neither distributive nor complemented.
(4) A bounded lattice which is both distributive and complemented.
Q. 3 (a) Answer the following:
(i) Define sub-Boolean algebra. State the necessary and sufficient condition for a subset becomes sub-algebra. Find all sub Boolean 05 algebra of $\left\langle\mathrm{S}_{110}, \mathrm{D}\right\rangle$.
(ii) Prove the following Boolean identities:
(1) $\left(x^{\prime} \oplus y\right) *(x \oplus y)=y$
(2) $(x \oplus y \oplus z) *(y \oplus z)=(y \oplus z)$
(b) Use the Quine-Mccluskey algorithm to find the prime implicants and $\mathbf{0 7}$
also obtain a minimal expression for
function: $f(a, b, c, d)=\sum(15,14,13,6,5,2,1)$.

OR

Q. 3 (a) Use Karnaugh map to find a minimal sum-of-product expression for the $\mathbf{0 7}$ function given by $\sum(0,1,2,3,6,7,13,14)$ in four variables $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$.
(b) Answer the following:
(i) Given an expression $\alpha(a, b, c, d)=\sum(2,3,6,8,12,15)$, determine the value of $\alpha(3,5,10,30)$ where $3,5,10,30 \in\left\langle S_{30}, D\right\rangle$.
(ii) Find the sum of products expansions of Boolean functions $f(x, y, z)=(x+z) y$
Q. 4 (a) Define group homomorphism; prove that group homomorphism preserves identities, inverses and subgroups.
(b) Define cyclic group. Find generators of $\left\langle Z_{12},+_{12}\right\rangle$. Also find its all subgroups. Which subgroups are isomorphic to $\left\langle Z_{4},+_{4}\right\rangle$? Justify.

OR

Q. 4 (a) Show that if every element in a group is its own inverse, then the group must be abelian. Is the converse true? Justify.
(b) Define symmetric group $\left\langle S_{3}, \Delta\right\rangle$. Write its composition table. Determine all the proper subgroups of $\left\langle S_{3}, 0\right\rangle$. Which subgroup is normal subgroup? Support your answer with reason.
Q. 5 (a) Define isomorphic graphs. Determine whether the digraphs G and H given in figure - 1 (a), (b) are isomorphic.
(b) Define node base of a digraph. Find all node base of the digraph shown07 in figure -2 . List out all the properties of a node base. Explain why no node in node base is reachable from any other node in node base.

OR

Q. 5 (a) Define: path, simple path, elementary path. For the graph given in Figure - 3:
(i) Find an elementary path of length 2 from v_{1} to v_{3}.
(ii) Find a simple path from v_{1} to v_{3}, which is not elementary.
(iii)Find all possible paths from node v_{2} to v_{4} and how many of them are simple and elementary?
(b) Define a directed tree. Draw the graph of the tree represented by $(A(B(C(D)(E))(F(G)(H)(J)))(K(L)(M)(N(P)(Q(R)))))$ Obtain the binary tree corresponding to it.

Graph G:
Figure - 1 (a)

Graph H:
Figure - 1 (b)

Figure - 2

Figure - 3

