\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA. Sem-II Remedial Examination December 2010

Subject code: 620005

Subject Name: Computer Oriented Numerical Methods
Date: $20 / 12 / 2010$
Time: 10.30 am - 01.00 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
4. Assume data where ever necessary.
Q. 1 (a) Describe the Newton-Raphson method and derive its formula analytically.One of
the root of the equation $\sin x-x-2=0$ lies near $x=2.5$. Find the root with tolerance 0.001 .
(b) Solve the following system of equations using Guass elimination method

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

Q. 2 (a) Discuss different type of difference table in detail with an assumed suitable example.
(b) Derive the formula to find the root using Bisection method also write algorithm for it.

OR

(b) Write a well commented program for Secant method. Also explain it in detail.
Q. 3 (a) Given a function in the form of a table as $\mathbf{0 7}$

x	2.0	3.0	4.0
$\mathrm{Y}(\mathrm{x})$	6.6	9.2	8.6

Interpolate the value if $\mathrm{y}(\mathrm{x})$ using Langrangian polynomial at
a. $\mathrm{x}=2.8$
b. $x=3.1$
(b) Give the table of values for function as

$\mathrm{x}:$	1.0	1.5	2.0	2.5	3.0	3.5
$\mathrm{y}:$	6.2	7.5	9.0	10.00	11.5	12.0

Determine both the regression lines and also prove that the intersect at $\left(\sum x / n, \sum y / n\right)$

OR

Q. 3 (a) Given the following data find the cubic spline equations for the 4 intervals

x	1	2	3	4	5
$\mathrm{~F}(\mathrm{x})$	6	-3	6	2	-6

Find the value of $f(x)$ at $x=3.8$
(b) From the Taylor series for $y(x)$, find $y(0.1)$ correct to four decimal places if $y(x)$ satisfies:
$y^{I}=x-y^{2}$ and $y(0)=1$
Q. 4 (a) Evaluate $\int_{-2}^{2} \frac{3 x}{(4+x)^{2}} d x$ using Trapezoidal and Simpson's $1 / 3^{\text {rd }}$ rule with six 07 intervals.
(b) Find the solution of the following differential equation $\frac{d y}{d x}=x^{2}+y$ using Runge $-\mathbf{0}$ Kutta second order method for $\mathrm{x}=0.1$ and 0.2 . Given that $\mathrm{y}=1$ when $\mathrm{x}=0$.

OR

Q. 4 (a) Find the eigen value of the matrix
123
$\mathrm{A}=2 \quad 3 \quad 1$
$\begin{array}{lll}5 & 1 & 6\end{array}$
(b) Give $\frac{d y}{d x}=1 /(\mathrm{x}+\mathrm{y}), \mathrm{y}(0)=2, \mathrm{y}(0.2)=2.0933, \mathrm{y}(0.4)=2.1755, \mathrm{y}(0.6)=2.2493$. Find $\mathrm{y}(0.8) \quad 07$ using Milne's Predictor Corrector formula.
Q. 5 (a) Write a well commented program for Gauss - elimination method.
(b) Solve by Gauss-Seidal method, the following system of Equations.

$$
\begin{aligned}
& 28 x+4 y-z=32 \\
& x+3 y+10 z=24 \\
& 2 x+17 y+4 z=35
\end{aligned}
$$

OR

Q. 5 (a) Discuss different types of errors and error propagation in detai; with example 07
(b) Write an algorithm for false position method and explain the method in detail. 07

