\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY
 MCA - SEMESTER II -EXAMINATION - WINTER 2015

Subject Code: $\mathbf{6 2 0 0 0 5}$
Subject Name: Computer Oriented Numerical Methods
Time:02:30 PM to 05:00 PM
Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Explain the following terms :
4. Blunders
5. Formulation Errors
6. Data Uncertainty
7. Total Numerical Error
(b) Let $x=0.00458529$. Find the absolute error if x is rounded-off to three decimal digits.
(c) What are the similarities and differences between Secant method and False Position method of finding root of a given equation $\mathrm{f}(x)=0$. Which one is best? Why?
Q. 2 (a) Geometrically explain Newton-Raphson method to find a root of the equation $\mathrm{f}(x)=0$ and hence drive the general formula. Also, discuss the pit-falls of Newton-Raphson method.
(b) Obtain positive numerical solution of $x^{3}+x^{2}-3 x-3=0$ using bisection method correct to four significant figures. Using Descarte's rule of sign, find how many roots the function has.

> OR
(b) Can Birge-Vieta method be used to find roots of any $\mathrm{f}(x)=0$? Find the root of the equation $x^{3}+2 x^{2}+10 \mathrm{x}-20=0$ correct up to three significant digits using BirgeVieta method (Hint : Take $\mathrm{r}_{0}=1$).
Q. 3 (a) Discuss different type of difference table in detail with an assumed suitable example.
(b) Fit the following data with the power model $\left(y=a x^{b}\right)$. Use the resulting power equation to predict y at $x=9$.

x	2.5	3.5	5	6	7.5	10	12.5	15	17.5	20
y	13	11	8.5	8.2	7	6.2	5.2	4.8	4.6	4.3

OR
Q. 3 (a) From the following table, find P when $\mathrm{t}=142^{\circ} \mathrm{C}$ and $175^{\circ} \mathrm{C}$, using appropriate

Newton's Interpolation formula.

Temp (t) ${ }^{\circ} \mathrm{C}$:	140	150	160	170	180
Pressure (P) kgf/cm ${ }^{2}$:	3.685	4.854	6.302	8.076	10.225

(b) What is inverse interpolation? Estimate value of x given following data when $\mathrm{y}=0.390$.

x	0	1	3	4	7
$\mathrm{~F}(x)$	1	3	49	129	813

Q. 4 (a) The values of pressure and specific volume of super heated steam are as follows :

Volume (V) :	2	4	6	8	10
Pressure (P) :	105.00	42.07	25.30	16.70	13.000

Find the rate of change of pressure with respect to volume when $\mathrm{V}=2$ and $\mathrm{V}=8$.
http://www.gujaratstudy.com
(b) Evaluate $\int_{-2}^{2} \frac{3 x}{(4-x)^{2}} d x$ using Trapezoidal and Simpson's $1 / 3^{\text {rd }}$ rule with six intervals.

OR
Q. 4 (a) A body is in the form of a solid of revolution, whose diameter d in cm of its sections at various distances $x \mathrm{~cm}$ from one end is given in the table below. Compute the volume of the solid.

$x:$	0	2.5	5.0	7.5	10.0	12.5	15.0
$d:$	5.00	5.5	6.00	6.75	6.25	5.5	4.00

(b) The function $y=\sin (x)$ is tabulated below. Find the value of $\operatorname{Cos}(1.74)$ and $\operatorname{Cost}(1.84)$ using interpolation technique.

X	1.70	1.74	1.78	1.82	1.86
$\sin (x)$	0.9917	0.9857	0.9782	0.9691	0.9585

Q. 5 (a) Given the following differential equation $\frac{\mathbf{d y}}{\mathbf{d x}}=\frac{1-x y}{\mathbf{x}^{2}}$, with $\mathrm{y}(1)=1$. Compute $\mathrm{y}(1.1)$,
$y(1.2)$ and $y(1.3)$ using Runge-Kutta third order method and obtain $y(1.4)$ using Milne- Simpson's predictor corrector method.
(b) Using Gauss Seidal method, solve the following set of simultaneous equations upto 07 three decimal place accuracy. Do partial Pivoting

$$
\begin{aligned}
& x+3 y+z=10 \\
& x+2 y+5 z=12 \\
& 4 x+y+2 z=16
\end{aligned}
$$

OR

Q. 5 (a) Given the following differential equation $\frac{\mathbf{d y}}{\mathbf{d x}}=(\mathbf{x}+\mathbf{y}) \mathrm{e}^{-\mathbf{x}}$, with $\mathrm{y}(-0.1)=0.9053$.

Compute $\mathrm{y}(0), \mathrm{y}(0.1)$ using Runge-Kutta second order method and obtain $\mathrm{y}(0.3)$ using Adam- Bashforth-Moulton's predictor corrector method.
(b) Find numerically largest eigen value and corresponding eigen vector of the following 07 matrix using power method by taking $\mathrm{X}_{0}=[1,1,0]^{\mathrm{T}}$.

$$
\left[\begin{array}{lll}
3 & 2 & 4 \\
2 & 0 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

