\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA. Sem-IV Examination May- 2011
 Subject code: 640010

Subject Name: Analysis and Design of Algorithm (ADA)
Date:26/05/2011

Time: 02.30 pm - 05.00 pm
Total Marks:

70Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q. 1 (a) Write a recursive algorithm for Binary search of a sorted array of n elements. Derive the time complexity of this algorithm?
Does this algorithm use Divide and Conquer (D\&C) strategy? Whether D\&C always leads to balanced splitting of the problem or it may lead to imbalanced (or unequal) splitting also?
(b) (i) State the functional algorithmic specification of factorial function:
factorial (n). Establish the correctness of this functional algorithm using the Principles of Mathematical Induction.
(ii) Write an efficient version of the following algorithm:
$\mathrm{x}=0$;
for $\mathrm{i}=1$ to N do
begin

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}+0.01 ; \\
& \mathrm{y}=(\mathrm{a} * \mathrm{a} * \mathrm{a}+\mathrm{c}) * \mathrm{x} * \mathrm{x}+\mathrm{b} * \mathrm{~b} * \mathrm{x} \\
& \text { writeln ('x } \left.=\text { ', } \mathrm{x},{ }^{\prime} \mathrm{y}={ }^{\prime}, \mathrm{y}\right)
\end{aligned}
$$

end
(iii) $\mathrm{p}=0$;
for $(\mathrm{i}=1 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$ \{ if $(\mathrm{a}[\mathrm{i}]>\mathrm{a}[\mathrm{p}])$ \{
$\mathrm{p}=\mathrm{i}$;
\}
\}
$\max =\mathrm{a}[\mathrm{p}] ; \quad / * \mathrm{p}$ is the position of $\max * /$
Q. 2 (a) (i) Write an algorithm for multiplying two matrices A and B of size $\mathrm{N} \times \mathrm{N}$ and store result in matrix C.
(ii) Show that the time of this algorithm is proportional to $\mathrm{N}+3 * \mathrm{~N}^{2}+2 *$ N^{3}. Write down its worst case time complexity.
(b) (i) Briefly describe Pigeonhole Principle (or Dirichlet Drawer Principle)
(ii) State Chinese Remainder theorem
(iii) Describe Big-oh Notation and Theta Notation and write their salient (main) characteristics.
(b) (i) What is Latin square?
(ii) What is Convex Hulls problem? Give an example of a 2-D Convex Hull, and illustrate it with respect to the definition of Convex Hull.
Q. 3 (a) (i) What is the general structure of problems solved by Greedy algorithm?
(ii) Write down basic steps for solving Knapsack problem using greedy algorithm approach.
Knapsack problem is stated as follows:
There are n objects numbered $\mathrm{i}, \mathrm{o} \leq \mathrm{i} \leq \mathrm{n}-1$, having weights w_{i} and contribution to profit p_{i}. There is a sack having a capacity of M. If a fraction x_{i} of the object i is put in the sack, then it increases its weight by $w_{i} x_{i}$ and contributes $p_{i} x_{i}$ to the profits. Find the filling that maximizes the profits.
(b) Write the dynamic programming algorithm for finding the longest common sub-sequence in a given sequence.

OR

Q. 3 (a) (i) What is spanning tree? Show examples of some of spanning trees 07
including
a minimum spanning tree of an undirected graph.
(ii) Write the basic steps of Kruskal's algorithm for finding minimum spanning tree.
(b) Write down four basic steps used in a dynamic programming solution. Briefly describe Travelling Salesman Problem and write down the basic solution methodology using dynamic programming approach.
Q. 4 (a) Describe backtracking strategy. Write down Depth-First Search (DFS) 0707 and $\begin{aligned} & \text { algorithm using Backtracking Strategy. You can simply write a backtrack } \\ & \text { statement without giving its details. }\end{aligned}$
(b) (i) Derive complexity of Quick-Sort algorithm.
(ii) Briefly describe Splay Trees.

OR

Q. 4 (a) (i) Describe Backtracking framework and write down the four factors on
 07 which the efficiency of backtracking depends.

(ii) What is Hamiltonian Circuit (Cycle)? Can it be used to solve Travelling Salesman Problem? Briefly Explain.
(b) (i) Derive Complexity of Merge-Sort algorithm. 07
(ii) Briefly describe Binomial Heap.
Q. 5 (a) (i) Write a brief description of sequential search for unsorted list with n entries under the following headings:

- Problem
- Best Case
- Worst Case
- Average Case
- Space Efficiency
(ii) What is meant by NP problems? Write down the salient (main) characteristics of these problems.
(b) Briefly describe NP-Complete problems. What is the significance of NP Complete problems? Give an example of NP-Complete problem.

OR

Q. 5 (a) (i) Write a brief description of matching a given pattern string of length m in a text string of length n under the following headings:

- Problem
- Best Case
- Worst Case
- Average Case
- Space Efficiency
(ii) Briefly describe the term Reductions (in the context of NP and NPComplete Problems). What are its advantages? As a corollary of Reductions, whether the converse is also true?
(b) (i) Write a short note on Approximate Solutions to NP-Complete problems.
(ii) Give examples to show that the assumption that " P means 'easy"" and "'not in P' means 'hard'" is not always true in practice.

