Q.1

Q.2

(b)

07

Seat No.: _____

Enrolment No._

GUJARAT TECHNOLOGICAL UNIVERSITY

	M. E SEMESTER – I • EXAMINATION – W	INTER • 2014	
Sub	oject code: 710204N	Date: 04-12-2014	
Sub	ject Name: Computer Graphics		
Tin	ne: 10:30 am - 01:00 pm	Total Marks: 70	
Ins	tructions:		
	1. Attempt all questions.		
	2. Make suitable assumptions wherever necessary.		
	3. Figures to the right indicate full marks.		
(a)	Explain CRT in detail with its merits and demerits		07
(b)	Explain different Scan conversation methods and compare it		07
(a)	Explain aliasing and anti-aliasing techniques. Describe un-weighted area sampling?		07

Write midpoint ellipse generation algorithm. Given input parameters rx=8 and ry=6

Q.3	(a)	Define Clipping. Write and explain Cohen-Sutherland line clipping algorithm.	07
	(b)	Explain and compare Boundary fill and Flood fill algorithm	07

find other points with the help of Midpoint ellipse algorithm

Explain and compare Boundary fill and Flood fill algorithm OR

Q.3	(a)	Explain Weiler-Atherton polygon clipping assuming that the clipping window is a	07
		rectangle in standard position	
	(b)	Explain different character generation method in detail	07

Q.4	(a)	List different Transformations and show that the composition of two rotations is	07
		additive by concatinating the matrix representation for $R(\Theta 1) \cdot R(\Theta 2) = R(\Theta 1 + \Theta 2)$	

(b)	Explain Window to View-port Coordinate Transformation	07
	OR	

Q.4	(a)	Describe Hermite Interpolation	07
Q.4	(b)	Describe Perspective projections and Parallel Projections	07

Q.5	(a)	Determine the Bezier blending functions for five control points. Plot each function	07
		and label the maximum and minimum values.	

	WITH 100 01 VIIV 11100 11110 WITH 11111 VIIV 1	
(b)	Explain i) Back face Detection method	07
	ii) Depth buffer method for detection	

OR

Q.5	(a)	Explain the classification of Visible surface Detection methods with example.	0
	(b)	List basic illumination models, explain all in detail	0

07