Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 714104 Date: 05-12-2014

Subject Name: Digital Image Processing and Applications

Time: 10:30 am - 01:00 pm Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full mark.
- Q.1 (a) Answer the following Questions.

07

- 1. Define D4-Distance between two pixels P and Q of coordinates (x,y) and (s,t) respectively.
- 2. Compare median filtering and a low pass filtering on a noisy image. Which performs best (i.e. removal of most noise with least blurring)? How?
- 3. Explain Rayleigh noise. Also mention its mean and variance with respect to the gray level of an image.
- 4. What is the basic idea of bitplane slicing?
- 5. Draw the sobel mask for the edge detection.
- 6. How can we construct digital laplacian mask from analog laplacian filter?
- 7. What do you mean by a histogram of an image?
- (b) In the image shown in figure 1 compute D4, D8 and Dm distances between pixels p and q for V= {5, 6, 7}. Take pixel p as center of the image and find the distances for all other pixels considered as q pixels.

1	2	2	2	3
5	3	5	6	7
5	2	5	5	6
7	5	1	7	7
7	4	2	3	1

Figure 1

- Q.2 (a) Explain Histogram Specification technique in detail with suitable mathematics.
- 07 07

07

(b) Suppose "m" be the gray-level of the input image, which has to be transformed to output image gray level "l" by histogram equalization technique. For an 8-level image of size 64 X 64, we have the following frequency table for the input gray levels.

m	0	1	2	3	4	5	6	7
Frequency	123	78	281	417	639	1054	816	688
of m								

Obtain the resultant gray level "l" using histogram equalization technique. Also plot the equalized histogram of the output image.

OR

(b) Compute the DFT basis matrix for N=4.

07

Q.3 (a) Apply median operator on image shown in figure 2. Conclude about the results. 07

1	1	7	7	7	8	8	8
6	6	6	5	5	5	1	8
6	6	6	5	5	1	8	8
8	7	7	5	1	8	8	8
8	8	8	5	5	8	8	8
8	8	8	5	1	7	1	8
8	8	8	5	5	7	1	8
8	8	8	5	5	7	1	8

Figure 2

(b) Explain inverse filtering method. Discuss the drawback and its solution of the inverse filtering method.

OR

- Q.3 (a) Describe the Ideal Low Pass Filter (ILPF). What benefits we have if we use a 07 Butterworth low pass filter in place of the ILPF.
 - (b) Discuss about Homomorphic filtering in detail with suitable mathematics. 07
- Q.4 (a) Discuss various filters used for detecting lines and edges in image, and give the mathematical logic behind the filter.
 - (b) Discuss about Hough transform in X-Y coordinate system. 07

OR

Q.4 (a) Apply the morphological erosion operation on an input image for structuring element as shown in Figure 3.

0					
1	1	1	1	0	0
0	1	1	1	1	0
0	1	1	1	1	0
0	1	1	1	0	0
0	1	0	1	0	0
1	1	0	0	1	1

0	1	0
1	Θ	1
0	1	0

Figure 3; 6 X 6 Image Segment, Structuring Element

- (b) What are the three stages of the canny edge detector? Briefly explain each phase. 07
- Q.5 (a) Segment the image shown in figure 4 below, using the split-and-merge 07 procedure. Also show the quadtree corresponding to the segmentation.

Figure 4: 4 X 4 binary image

(b) Give few applications of morphological operations in the field of image 07 processing.

OR

- Q.5 (a) Explain the region growing technique for region based image segmentation 07 with suitable example.
 - (b) List out the various applications of digital image processing. Explain any one application in detail.
